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ABSTRACT 

In [5], King proved that the centralizer of a rank-1 transformation equals 

the "weak closure" of its (positive and negative) powers (see below for a 

definition of the weak topology). We define rank-1 flows, and then show 

that simple modifications of King's proof yield an analogous statement 

for rank-1 flows. 

1. I n t r o d u c t i o n  

For all that follows, let (X,A' ,p) be a Lebesgue probability space. Let {Ti} be 

a sequence of m.p.t. 's (measure-preserving transformations) on X. We say that  

Ti ~ S weak ly  if, for all measurable sets A, p (T[ - I (A )AS- I (A ) )  --* 0 as i ~ oo. 

For T a m.p.t, on X,  let wcl(T) denote the weak closure of {T n : n E Z}. Let 

C(T) denote the cen t ra l i ze r  of T, i.e., the set of m.p.t. 's which commute with 

T. King's weak closure theorem [5] states that C(T)  = wcl(T), for rank-1 T. 

Note that often wcl(T) is a much larger set than {T n : n E Z}. For example, 

the irrational rotation Ra  : [0,1) --~ [0, 1) defined by x ~ x + a (rood 1), a 

irrational is rank-1 [2], and it is easy to see that wcl(Ra) = {R~ : /3 e [0,1)}. 

Hence the only maps which commute with a given irrational rotation are all 

rotations of the circle. 

This example has a flow analogue. By a flow r we mean a group {r : t E It} 

of measure-preserving transformations on X with $0 = id (identity on X) and 

satisfying $t$a = r for all t, s E R.  Furthermore, we require that  the flow 
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be measurable, i.e. for all A E X, {(z,t)  : r  �9 A} is a measurable set in 

(X x R,/J  x m), where m denotes Lebesque measure on R. 

For any t �9 R, let et : [0,1) x [0,1) ~ [0,1) x [0, 1) be defined by (x, y) 

(x+t, y+ta), where a is irrational. Then ~b is the well-known irrational slope flow 

on the torus. Again, it is easy to see that the weak closure of {~t : t �9 R} contains 

all translations of the form (x, y) ~ (x + u, y + v) where u, v are constants. These 

translations are not contained in the group {r : t �9 R}, yet certainly commute 

with each group element. 

For any flow ~b, let wcl(~b) denote the weak closure of {r t �9 R} and let C(~b) 

denote the set of m.p.t.'s which commute with all group elements {r : t �9 R}. 

The above example suggests that for certain types of flows, wcl(r may equal 

C(~b). In this paper we extend the notion of rank-1 to flows, and show that for 

such flows, this equality holds. 

In the remainder of this section we summarize useful facts about flows, define 

rank-1 flows, and give some of their properties. In section 2 we extend the notion 

of coding to flows, allowing us to emulate King's proof in section 3. We place the 

proof of lemma 1.2 in the appendix, as it is technical and unrelated to the main 

coding arguments. 

A flow is e rgodic  if all measurable flow-invariant sets are trivial, i.e. if A is 

measurable and e t A  = A for all t, then/~(A) = 0 or 1. The entropy of a flow is 

defined by the formula h(~) = h(r 1), where "h" in the right-hand side denotes 

the entropy of a transformation. 

LEMMA 1.1: Let r be a flow. Then 

(a) For any measurable set A, I~(r ~ 0 as t ~ O. 

(b) For any red/t ,  h(r  = Itlh(r 

(c) /5 ~b is an ergodic flow, then there is a to such that et0 is an ergodic trans- 

formation. 

(d) /5 h(r is finite, there exists a red/number  to and a finite partition 7 ~ such 

that oo = x .  

Proof.- The measurability of the flow implies (a). See [4, pp. 255,326] for proofs 

of (b) and (c). Statement (d) follows from (c) and Krieger's theorem [8]. We call 

the partition P a g e n e r a t i n g  partition for r 

Let T' be a partition of X with k atoms. Each point z E X has a P - n a m e ,  

a function z : R ~ {1 , . . . ,  k}, where z( t )  = j iff r  hes in the j t h  atom of 7 ). 
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We will often think of a ~)-name as a measurable "coloring" of R, where each of 

k colors corresponds to an atom of 7 ). A word W of length h is a finite "P-name 

with domain [0, h). Let len(.) denote the length of a word. To indicate substrings 

of names, the symbol xlba means the restriction of the name to [a, b). 

For two words V, W of length h, define the d-distance to be 

w) = �88 �9 [o, h): V(t) # W(t)}). 

Similarly, for any x,y E X define d(x,y) = limsupt_.oo'J(x]to,yJto). Note that 

satisfies the triangle inequality. A word W' is called a d-e copy of a word W if 

the two words have the same length and d(W, W') < e. 

A :P-name xl~ ~ is said to be covered with dens i ty  fl by d-e copies of W, if 

there is a disjoint sequence of intervals [ai, ai + h), 0 _< al < a2 < -'. ,  where each 

xl~ +h is a d-e copy and liminfn--,oo n h / ( a ,  + h) = ~. 

A flow r is rank-one  if for any partition :P, and any positive r H, there is a 

single word W with length h greater than H such that for almost every x E X, 

the :P-name of x can be covered, with density greater than (1 - e), by d-e copies 

of W. We will say that W e-covers and will call it a covering word.  We will 

refer to d-e copies of W as e-nearcopies of W, and often denote such nearcopies 

by W ~, W", etc. When there is no ambiguity, we will drop the e. We will always 

denote the length of a nearcopy by h, and if a substring of a nearcopy has length 

s, we let s% denote the value s /h .  

Note that this definition is a "natural" flow analogue of the d-defiuition of 

rank-1 transformations. (See [7] for several equivalent definitions.) 

It is easy to see that the irrational slope flow mentioned above is a rank-1 flow; 

this follows via the same argument used to show that irrational rotations of the 

circle are rank-1 [2]. There is another, equivalent definition for rank-1 flows which 

uses a flow version of Rokhlin towers. This idea is presented in the appendix. 

Also, rank-1 flows can be constructed via "cutting and stacking". An example 

is a weak-mixing rank-1 flow 0 = r • r where each r is weak-mixing. This 

can be constructed by adapting example (vi) of [5] to flows. Here C(O) contains 

both idl • r and r • id2, so is rather more complex than {0 t : t E R}. 

The following facts about rank-1 flows will be needed for the proof of the weak 

closure theorem. Proofs may be found in the appendix. 

LEMMA 1.2: Let r be a rank-1 flow. Then 
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(a) ~ is ergodic. 
(~,) h(~) = o. 
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2. C o d i n g  

Let $ be a flow which has a generating partition 7), as described in lemma 1.1. 

Let S �9 C(~) and fix ~ > O. Define Q = S-1(~) .  Since 7 ) generates, there is a 

real number to and a natural number n such that 

t i  

~: V ~"~ 
I I l l  

By this we mean the following: If we write Q as an ordered partition 

{QI,...,QK}, there exists another ordered partition Q' = {Q~,...,Q~} with 

IQ, Q'I aej Z~=I ~(QjxQ~) < ~ and 

t t  

O) Q ' c  V ~"~ 
I N 

Let x �9 X. The (2n % 1)-tuple of P-colors ( z ( - n t o ) , Z ( - ( n  - 1)t0), . . .  , z ( n t o ) )  

determines a Q' atom by equation (1). More precisely, (1) gives us a map f : 

{ 1 , . . . , K }  2"+1 ~ { 1 , . . . , K } .  Thus we can define a code  C which takes P-  

names to ~O-names by 

(2) (c , ) ( t )  = f ( , ( t  - nto), . . . ,  , (t  + nto)). 

Since S E C(~), the ergodic theorem for flows implies that  for almost all z E X,  

d(Cx, Sz) < ~. Define the c o d e l e n g t h  lenC and the e r ro r  r a t e  errC of the 

above code to be 2n + 1 and 2- [•, aq ,  respectively. 

We can also code the substring xl~ , using (2). The only difficulty is that this 

equation is meaningless for t < a + nto or t >_ b - nto. For these values we just 

let (Cz)(t)  --- z( t ) .  Hence C(xl~ ) has the same length as xl~. To absorb "end 

effects", we always assume that b - a is much greater than to �9 lenC. We say 

a substring xl b c o d e ,  well (under C) if d(C(~?,), (Sz)lb,) < errC. We defined 

errC to be 2. [Q, Q'I rather than [Q, Q'I so as to allow 

LEMMA 2.1: For any code C, and any postive 6, there encists H such that: For 

a/most every z E X, ffwe cover at least (I -6) ofz[~ wdth disjoint substr~ngs 



Vol. 84, 1993 RANK-ONE FLOW 133 

with lengths exceeding H, then at ]east (1 - 25) o[ xl~ ~ is covered by those, of 

the above substrings, which code well under C. 

See [6] for a proof of the analogous statement for transformations. This proof 

carries over to the case of flows with no difficulty. The next lemma is a simple 

consequence of the way the code is constructed: 

LEMMA 2.2: For any two words W, W ~ of equal length, 

 (cw, cw') < (]enC). w'). 

3. T h e  w e a k  c l o s u r e  t h e o r e m  

This section is devoted to proving 

THEOREM i: For a rank-one ~/ow if, C(~b) = wcl(r 

Our proof follows King's closely, employing similar coding arguments. (Actu- 

ally, we will only prove that C(ff) C wcl(ff), since the converse is immediate.) We 

shall do the proof in several steps. First, we use cornm__utativity, genericity, and 

the ergodic theorem to restrict our analysis to a single P-name. Then we show 

that if the theorem were false, this P-name exhibits two forms of "periodicity". 

Finally, we use this periodicity to produce a contradiction, by showing that our 

candidate for the centralizer can be approximated by simple shifts of the form 

3.1 REDUCING TO A SINGLE ~:)-NAME. 

Fix S E C(~). By lemmas 1.2b and 1.1d, we are guaranteed the existence 

of a generating partition P,  i.e., for some real to, the ~r-algebra generated by 

{~nt0(p) : n E Z} equals X (up to nullsets). Let C be a countable sequence of 

codes with error rates going to zero. For T = ~0, let .A be the countable algebra 

of T, P-cylinder sets. By the ergodic theorem for flows and the commuting of 

S with T, there exists x, y E X such that y = Sx, with both points generic for 

all sets in the countable collection {~ tAAS-1A  : t E Q,A E .A}, and such that 

]emma 2.1 holds for both points for each code in C. We will keep P,  T, x, y fixed 

for the remainder of section 3. The following lemma converts statements about 

weak convergence into statements about P-names. 
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LEMMA 3.1: For any sequence {ti} in R, hrd(~bt'x,y) ~ 0 then et, we,k S. 

Proof: By lemma I.I, we can assume that each ti E Q. Let A E .A be a cylinder 

set contained in V~=-/TJ~). Then A has a discrete T, P-name A - i . . .  Az. (The 

Aj-th atom of P contains T-JA.) Define 

freq(C) = limoo ~ Ic(t)dm(t), 

where C C [0, oo), lv is the indicator function for the set C, m denotes Lebesque 

measure on R, and C is such that the limit actually exists. (In our context, the 

ergodic theorem will guarantee this.) Abbreviate et,= by z. By genericity and 

the ergodic theorem, we have 

#($-"AAS-1A)  = freq{t >_ 0 : r  �9 ~b-"A XOR $'x �9 S-1A} 

= freq{t >_ 0 : ~btz E A XOR Cry E A} 

= freq{t >__ 0 : z(t + rio) = Aj for all j e { - I , . . . , I }  XOR 

y(t + jr0) = for j �9 { - Z , . . . ,  t}} 

< freq{t > 0 : z(t + jto) • y(t + rio) 

for at least one j �9 { - l , . . . , / } }  

_ (2 /+  1)d(z,y). 

Letting i ~ oo establishes the lemma. The converse can be proven in a similar 

way, but  is not needed for what follows. II 

3.2 THE PERIODICITY EXTENSION LEMMA. 

From now on we assume that Theorem I is false, i.e., assume that there is an 

S in C(r  which is not contained in wcl(~). As T is rank-l, there is a sequence 

of covering words {Wn}, each which r with r  "x~ 0 and len(Wn)/1  c~. 

The phrase "sufficiently accurate cover" below means that we choose a covering 

word of sufficiently large index n from this sequence. 

Informally, the next lemma tells us that if the action of S on nearcopies is 

"close" in some way to a shift r176 then s cannot be an arbitrarily small fraction of 

the length of the covering word. The lemma is almost identical to King's discrete 

version (lemma 1.4 of [5]), and King's proof carries over with only notational 

changes. 
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LEMMA 3.2 (Shift lemma): There exist positive constants a, # such that for any 

code C with errC less than a, and every su~ciently accurate covering word W 

of length h, f f  there is a shift s with 0 < s < h such that 

 (cwi. Wlo < . ,  

then s% > 2a. 

Remark: This lemma is also true for negative shifts s, in which case the hy- 

pothesis is d(CWI0 ~+~ W[~a) < a,  and the conclusion is 18%1 > 2#. t 

Now fix a, a, and henceforth, we shall assume that all codes are members from 

C with error rates less than a. For a word of length h, and p E R,  let W @ p be 

the word of length h defined by ( W  ~ p)(t) = W([t + Pl rood h), t �9 [0, h). The 

word W O p is defined in a similar way. When d(W, W (9 p) is small for some 

p, we will informally call this pe r lod le i ty .  In the sequel we will often use the 

simple but  important fact that for any words V, W of the same length and any 

real p, -d(V, W)  = -d(V @ p, W ~ p). 

The following lemma tells us when the periodicity on a sufficiently long piece 

of a word can be extended to the entire word. 

LEMMA 3.3 (Periodicity extension lemma): Given ~, there exist e', H and codes 

C1 , . . . ,  CN (where N = [1/#J + 1) such that f f  there exist real p and r with 

0 < r < h and r% > a, as well as a word W of length h > H satisfying: 

(i) d(WI~,(W ~P)I~) < g ,  
(ii) for each i, "d(CiW, W ~ r) < 2errCi, 

then -d(W, W @ p) < ~/2. 

Proof." Let e0 be positive, to be determined later. For i = 1, . . .  ,N ,  pick a 

positive ei < e i - 1 / 2  and a code Ci with errCi < aei. Letting ki = lenCi, pick 

ei so small that kigi -1- 4ei < ei-x. Let ~' = CN. 

Take H much larger than maxi ki, so that we may ignore the "end effects" of 

the codes. Using (i), we have 

d(CN(WIE), C N ( W  �9 pIE)) < kN'd(WlE, W ~ pIE) < k~veN. 

From (ii) we get 

d(Wl~ r, CN(W[~)) _< 2errCN/r% < 2ely 
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and 

-d(w �9 plF, c v(w �9 pl )) < 2eN. 

The triangle inequality yields 

3(Wl~ r, w ~ pl~ r) < k ~ N  + 4~N < tN-~. 

Continuing in this manner, using codes CN-1, CN-2, etc., we can show, for 

i = 1 , . . . , M  = [h/rJ that 

_i(i+l)r'~ ) 

If h - Mr  = 0 we are done, by setting t0 = ~/2. Otherwise, we continue the 

above analysis using code CN-M-1,  yielding 

~(W ~ Mrl~, W ~ p ~ Mrl~) < eN-M-a < t0. 

This means that the error on the "leftover" substring of length h - M r  can be 

controlled, for the above inequality implies 

(h - M r ) d ( W l ~ ,  W ~ P I ~ )  < ~0r. 

Thus 
~or �9 (h - Mr)% _< 2co. ~(w, w r p) < ~o. (Mr)% + (h - Mr) 

The lemma is established, then, if we set ~o = t /4 .  | 

Remark: In hypothesis (ii) of this lemma, r can be replaced with - r .  | 

3.3 INDUCING "PERIODICITY". 
Fix positive t < ~. The periodicity extension lemma produces N = [l/~J + 1 

codes and 6 ~. Now pick a code C with an even smaller error rate e with 6e/~ < #.  

Pick positive 7 less than e satisfying 7" (lenC)/~ + ~/< e. Next choose W, an 

~-covcring word of length h, of "sufficient accuracy" (in the sense defined above) 

so that  h is large enough to make the periodicity extension lemma hold~ and ~ is 

small enough so that 

2( lent )% + ~.  (lenC)/o" + ~ < e. 

We will add further constraints to ~ and h below. 
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Let W' = xll  +~ be a nearcopy on x]~. Let W" = xl[ +h be the next nearcopy, 

called the successor ,  with a gap  of g = b - a - h. We call xl~ +s' a g o o d  

nearcopy if: g% < 7; there is a neareopy "lying below" on I/, i.e. W m = yl~ +h 

is a neareopy with a < c < a + h; and each of the substrings xl~ +h, xl~ +h, and 

xl~ +h code well under the N + 1 codes. Call s = c - a the shif t  associated with 

the good neareopy. (See Figure 1.) 

W I "-g'*" W" 

a a + h  b b + h  

c W "  c + h 
w 

4 ,.q 

Figure 1: x[~ +h is a good nearcopy. Nearcopies axe shown by thick "arrows", 
with the large dot indicating the start and the arrowhead indicating the end of 
the word. 

By a Fubini argument, assume that  we also choose this cover sufficiently ac- 

curately so that  at least (1 - e) of z l ~  is covered by good nearcopies. (We 

must make sure that  h is large enough so that the hypotheses for lemma 2.1 are 

satisfied for all N + 1 codes.) 

Since the good neareopy codes well, we have 

d (CWl ,  ~ , Wl0 ~-" ) _< d(CWl,  ~ , CW' l ,  ~ ) + -d(CW ' I,,h W "  I0h-" ) + -d(W '" 10h-", Wl 0~-, ) 

< l e n C  + + - 

If r/ is small enough, the shift lemma yields 2~r < s%. Since the successor also 

codes well, a similar argument yields 1 - s% + g% > 2a. Combining this with 

g% < e < ~ gives us 

a < s % < l - o .  

Next, we assert the existence of a special good neareopy. 

LEMMA 3.4: There exists a good nearcopy, with shift denoted by r, with no 

gap between it and the next nearcopy. For a11 other shifts s associated with 

other good nearcopies, either r% < s% and r% < 1 - s% or 1 - r% < s% and 

1 - r %  < l - s % .  
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We shall defer the proof. Call this special good nearcopy the reference 

nearcopy.  Note that a < r% < 1 - a. 

The existence of the reference nearcopy imposes a periodicity on the covering 

word. Call the reference nearcopy, its successor nearcopy, and the nearcopy lying 

below W', W" and W I" respectively. Since the substring of x "lying above" 

W ~176 codes well, we have d(CV, W ' )  < e, where V denotes the concatenation 
o h  I I  r W [rW [0- (See Figure 2.) Since V consists of parts of nearcopies with lengths 

no shorter than the minimum of r and h - r, and rain(r%, 1 - r%) > a, we have 

which implies 

Q(w e ~, v) < , /=  

d(C(W (]) r), CV) < r/. (lenC)/a. 

The triangle inequality yields 

d(C(W ~ r), W) < d(C(W ~ r), CV) + d(CV, W'") + d(Wll', W) 

< r/- (lenC)/a + e + T/. 

sin~ ~(cw, w e ~) _< ~(c (w  e ~), w ) +  "end effects", we have 

(1) d(CW, W @ r) < 2(lenC)~ + T/. (lenC)/a + e + r /< 2e. 

W I W II 

x "_ t . . . . .  U . . . . . . . . .  J " 

V 

W Ill 
y �9 �9 

4 r 

Figure 2: W I is the reference copy with shift r. V denotes the concatenation 
W I h TXTIO r 

r r r  O" 

Next, we will use equation (1) to show that the other good nearcopies impose 

different periodicity properties on the covering word. 



Vol. 84, 1993 RANK-ONE FLOW 139 

LEkllVIA 3.5: Let W ~ be a good nearcopy with associated gap g. Then 

w e g )  < 

Proof." Let the associated shift be s, and suppose that r% < s% and r% < l - s % .  

A similar arguraent will handle the case 1 - r% < s% and I - r% < 1 - s%. 

Use the notation of Figure 1. Consider the substring zl~ +h "lying above" W m. 

Replace each neareopy with the covering word W. Now WI~ "lies above" W]0 h- '  

and Wig -a "lies above" WI~_,+a. Changing the order of these two pieces of W 

produces the situation depicted in Figure 3. Since zlee +h codes well, the same 

triangle inequality argument used to derive equation (1) shows that the coded 

version of the top agrees with d-2e accuracy with the bottom. Equation (1) and 

the triangle inequality yield Figure 4, where the top and bottom are d-4e close. 

0e s - g , , ~  / ,h 

I I 
I I 

I I 

I I 

I I 
P 

h - s + g  h 0 h - s  

Figure 3: The covering word W is depicted by aa "arrow", with the large dot 
indicating the start and the arrowhead indicating the end of the word. The 
coded version of the top is d-2e close to the bottom. 

Thus, there are two different regions of periodicity on W. Let p = r - s + g. 
Then we have 

d(W e rig, W O r ~ PI~) < 4e/r% < 4e/a < ~'. 

Denote W @ r by V. We have 

- -  r r ~ t .  
d(Vl0, Y ~pl0) < 

By the same analysis that produced equation (1) we have 

d(CiW, W • r) < 2errCi for i = 1 , . . . ,  N. 
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= 8 

11 T a 

h - r  h 
~ A  

periodicity 
Is p 

D I 

I 

I 

I I 

I I 

I I 

I I 

I I 

I I 

h - r  

periodicity 
is p - g  

h - s + g  h 0 h - s  

Figure 4: This combines equation (1) with the previous figure. The top and 

bottom are d-4e close. 

Since "end effects" axe negligible (by our choice of h), this yields 

d(CiV, V O r) < 2errCi for i = 1 , . . . ,N .  

The periodicity extension lemma then implies d(V, V (9 p) = d(W, W (9 p) < e/2. 

Likewise, using the other region of periodicity, we have 

~(WI; +r, W (9 (p - g)l: +r) < 4e/r% < ~', 

so a similar argument using the periodicity extension lemma yields d(W, W (9 

( p -  g)) < e/2. By the triangle inequality, d(W (gp, W (9 ( p -  g)) < e. The lernma 

follows, as �9 p, w (9 (p - g))  = �9 g, w ) .  = 

It remains to prove le_mma 3.4. Let p = inf(min(u%, 1 - u%)) as tt ranges 

over all shift values found for good nearcopies on zl~ ~ If this infimum is at- 

tained, simply let the reference nearcopy be that nearcopy with shift r satisfying 

min(r%, 1 - r%) = p. Otherwise, there is a positive fl such that (1 - 2e) of z]~' 

is covered by good nearcopies satisfying min(s%, 1 - s%) > p +/3 for each shift s. 

Now remove from consideration ("uncover") all but one of the good nearcopies 

that do not satisfy tiffs condition. Denote tiffs surviving good nearcopy by zl~ +a 

and let the shift and gap be r and g respectively. Because we have removed some 

of the original good nearcopies, r satisfies the required inequalities of lemma 3.4. 

However, the gap g may be positive. To solve this problem, we redefine our 

covering word. If zl= *+h = W', let the new covering word be the concatenation 

,,,  ,=+h+g of length h + g. We have succeeded in creating the proper V = vvzla+h 
reference nearcopy, but now we need to eheek if lemma 3.5 still holds, because 
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V is a less accurate covering word and we may have introduced negat ive gap 

values on some of the other good nearcopies by enlarging W to V. 

The new word V is an (t/+7)-cover. Since V is longer than W, the "end effects" 

are smaller, and since we chose 3' so that 7" (lenC)/a + 3' < e, the right-hand 

side of equation (1) will now be 3e. Likewise, in Figure 4, the top and bottom 

will now be d-6e close. Since 6e/a < e ~, we can still use the periodicity extension 

lemma to prove lemma 3.5. 

The complexity introduced by negative gap values is only notational, since 

]g%l < 7. Figure 4 would be altered to show an overlap where there is presently 

a gap, but there would still be two different regions of periodicity, of sufficient 

length to allow the periodicity extension arguments to work. 

Finally, the fact that the newly defined good nearcopies only cover (1 - 2e) of 

xl~ (rather than (1 - ~)) merely adds one more epsilon to the right hand side of 

(2) below, which will not affect the argument. 

3.4 USING PERIODICITIES TO ARRIVE AT A CONTRADICTION. 

We will show that S is o(e)-close, in the weak topology, to r Let us construct 

a 7>-name z[~ as follows: If z]~ +h is a nearcopy W', let zl~ +h = WOr. Otherwise, 

let z(t) = (Cz)(t). Thus we have 

 (zl: +h , ( cx ) l l  +h) < e r, c w ' )  

_< d(W O r, CW) + d(CW, CW')  < 2e + T/- (lenC) < 3e. 

Thus d(z, Cz) < 3e. The triangle inequality yields d(z, y) < 4e < 4E' < 4~. Let 

zl~ +~ be a nearcopy with gap g (possibly not a good nearcopy). If it is a good 

nearcopy, by the preceding lemma we have d(W, W @ g) < e, so 

"~[Tx?lh~,v Ih--r, zla'l'h+r~la+h / < (~ "~- ~0)/r~r < 2g/O'. 

Now construct another name w[~ where  ' W [ : ~  "l'r = W[hh_r for each good nearco- 

py zl~ +h, otherwise, w(t) = z(t). Then we will have 

d{o la'l-h'l'r "la'l'h't'r~ d/'t~Lrlh "la+h+r~ 2g/tY, 
k~la-l.h ,~la-l-h J < ~tt Ih-r,*la+h ] < 

so "d(z,w) < 2~/a. Note that when zl~ +h is good, it equals �9 la+r+h wto+r . In other 

words, w]~ looks just like ~-rz,  except that w contains exact copies of W, while 

~-rz contains nearcopies, and there is no match when the nearcopies are not 
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good. More precisely, we have d(r w) < y/+ e. Several more applications of 

the triangle inequality produce 

(2) d ( ~ - ~ ,  y) < 5e + 2ela  + ~ < 8e/a. 

Since e can be made arbitrarily small, (and r depends on e) we have inf{d(r y ) :  

t �9 R} = 0, which contradicts S ~ wcl(~b). This establishes the theorem. | 

4. A p p e n d i x  

Our goal is to prove lemma 1.2: 

LEMbIA: Let 4 be a rank-I How. Then 

(a) ~b is ergod/c. 

(b) h(r = 0. 

Proof of (a): Let A be a flow-invariant set of positive measure. Let 7 ) be the 

partition {A, AC}, and fix 0 < e < 1/2. Since the flow is rank-one, there is a 

P-word W which e-covers. Pick z E A such that z is covered by nearcopies of W. 

W must be an at least (1 - e )  "monochromatic" word, the same color as A, since 

A is flow-invariant. If A e had positive measure, we could find an x E A r which 

is e-covered by W, an impossibility, as all :P-names in A c are monochromatic, 

colored differently than W. Hence A has full measure. | 

In order to calculate the entropy of a rank-1 flow, we require the concept of 

a flow under a function. By a flow u n d e r  a func t ion  (],  E,  T, v) we mean 

the following: Let (E, ~, v) be a finite measure space; f : E ~ R an integrable 

function, bounded above zero, satisfying v(E) f f d m  = 1; T : E ~ E an ergodic, 

invertible, measure-preserving transformation. Let Y --- {(e, s) E E • R : 0 < s < 

f(e)}, with measure space structure inherited from (E • R,  t, • rn). We define 

(f ,  E,  T, v) to be the flow on Y which takes a point (e, s) vertically upward at 

unit speed until it reaches the graph of f ,  then to (T(e),O), where it continues 

upward again, etc. Ambrose [1] showed that  every ergodic flow is isomorphic to 

a flow under a function. Rokhlin's theorem can be easily generalized to flows, 

using Ambrose's representation. A proof may be found in [9]. 

LEMMA 4.1: Let r be an ergod/c flow. For any positive H and e, we can represent 

as a ao~, , , , d ~  a function (f ,  E, T, ,,) where B = {b e E : f(b) = H} has ~,- 

meas  S eat  than (1 - e) and f(b) < for r B. 
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We refer to the set B • [0, H] as an (H, s)-tower with b a s e  B.  

LEMMA 4.2: Let r be a rank-one ~ow. Then for every partition 79, given positive 

e and h0 there exists an (h, e)-tower with h > ho and such that a t / eas t  (1 - e) 

of the hor/zonta/rows are at least (1 - e) monochromatic. 

Proof: Let W be an r/-eovering word of length h _> h0, where 7/ > 0 will be 

determined later. Because rank-one flows are ergodic, we can form a (H, r/)- 

tower with base B, with H chosen (by a Fubini argument) so large that for all 

x E B outside a set of measure less than r/, we can ~7-eover x[~ by nearcopies 

of W with density greater than (1 - ~7). Define f l  : B --* R by f l (x)  = inf{t > 

0 : ](z[~ +h,W) < ~}. Define B1 = {r : z E B}. Likewise, for i = 

2, . . . ,  [H/hJ, define fi(x) = inf{t _> f~-l(z)  + h :  d(z[~ +h, W) < ~}, and Bi = 

{~$~(x)x : x E B}. Now we can create a new tower with base B'  = Ui Bi and 

height h. (B I is measurable, since the fi are.) This new tower used up all of 

the old tower, except for the non-nearcopies and the error between nearcopies, 

with total measure at most 27. By another Fubini argument we can choose ~/ 

small enough so that at least (1 - ~) of the horizontal rows are at least (1 - e) 

monochromatic. If we also insist that 7/< ~/2, we are done. I 

Proof of (b): By ergodicity, represent the flow r as a flow under a function. 

We can make the simplifying assumption that P is ve ry  g o o d  in the sense of 

[9, p. 63], i.e., for each z, the P-name for z consists entirely of monochromatic 

intervals, and the infimum of the lengths of these intervals, taken over all x, is 

positive, say a. This is possible for two reasons: First, any partition can be 

approximated arbitrarily well by a very good partition with the same number 

of atoms (because our measure is normalized u x Lebesgue, and sets measurable 

with respect to dyadic intervals generate the Lebesgue-measurable sets). Second, 

the map P H h(r 1, P )  is continuous. Since 79 is very good, note that we have 

d(z[ t,  x[ t+") < u/a  for any z E X and any t, u > 0. (Here x is actually a point 

(e, s) in the product space.) 

We shall use Feldman's r-entropy formulation to compute the entropy of r 

Call a collection :P of disjoint measurable sets a (P, t, r ) - family  if for all D �9 :D, 

Let [D[ denote the cardinality of 2), abbreviate U o e v  D with U :D, and define 

kr(q~, 7 9) to be the infimum of numbers b such that for every positive e, there exists 
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an arbitrarily large t such that there exists a (7 ~, t, r)-family ~D with #(02)) > 1 - e  

and (1/t)log IVl _< b. By coronary 2.7 of [3], = lim -.0 Thus it 

will suffice to show that for fixed (small) r and ~, there exists an arbitrarily large 

t and a (7 ~, t, r)-f~mily ~D with #(U~D) greater than (1 - ~) such that § log I~1 can 

be made arbitrarily small. 

Fix (small) positive r, e and (large) positive h0. By lemma 4.2 we can produce 

an (h, e/2)-tower with h > h0 and such that for any two vertical words W',  W" 

of length h we have "d(W', W")  < r~/8. (See Figure 5.) Let t = h~/4 and set 

)~ = ar/2.  We can certainly assume that h0 was chosen large enough so that 

< t. Let B be the base of the tower and define 

L(h-O/xJ 
~D= U Di, w h e r e D i = B •  

i=1 

W I W II 

h 

Figure 5: For any vertical words W',  W",  d(W',  W")  < re/8.  

Let z, y E Di for some fixed i. Let the vertical coordinates of z and 1/respec- 

tively be u,v,  and let W ' , W "  respectively be the vertical words (of length h) 

that z, y live on. Then we have 

-d(W'l ~+t W'lV+t~ d(xlg,ulg ) d(W'l~+*,W"l~ +t) < '~(w' lu+ t w,,lu+ta + _ , . .  ,~ , 
- -  ~ k ' "  I l g  , " "  I l l  / " "  1t0 / 

< r~h/(8t) + )~/a = r /2  + r /2  = r. 

Thus ~D is a (P ,  t, r)-family. Since I) uses up all the vertical space of the tower 

except at most (t + ~)/h < ~/4 + c/4, and the tower uses up all but  at most a 

set of measure e/2, we also have #([.J l)) > 1 - e. 
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Now IVl < = 8t/( ar), so § l o g  iv[ ~ 0 t ~ Since we can pick h0 

as large as we want, t can be made arbitrarily large, m 
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